SHOEISHA iD

※旧SEメンバーシップ会員の方は、同じ登録情報(メールアドレス&パスワード)でログインいただけます

EnterpriseZine(エンタープライズジン)編集部では、情報システム担当、セキュリティ担当の方々向けに、EnterpriseZine Day、Security Online Day、DataTechという、3つのイベントを開催しております。それぞれ編集部独自の切り口で、業界トレンドや最新事例を網羅。最新の動向を知ることができる場として、好評を得ています。

直近開催のイベントはこちら!

Security Online Day 2023 春の陣

2023年3月14日(火)10:00~16:00

EnterpriseZine(エンタープライズジン)編集部では、情報システム担当、セキュリティ担当の方々向けの講座「EnterpriseZine Academy」や、すべてのITパーソンに向けた「新エバンジェリスト養成講座」などの講座を企画しています。EnterpriseZine編集部ならではの切り口・企画・講師セレクトで、明日を担うIT人材の育成をミッションに展開しております。

お申し込み受付中!

DB Press

1つのテクノロジーでは解決しない―IBM流、課題別データベース使い分けのススメ


 「ビッグデータは言葉ばかりが先行し、実際の業務はなおざりにされてきたところがあります」と語るのは、日本IBM ソフトウェア事業本部 インフォメーション・マネジメント事業部 ビッグデータ & データマネジメント製品営業部 統括部長の森 英人氏だ。データベースしか持っていないベンダーは、自分たちの製品が「ビッグデータに対応するデータベースで速い」ということばかりを強調する。本質はデータベースの「速さ」ではなく、顧客の問題をどのビッグデータに関わるテクノロジーを使い解決するか。

OLTPの最適化をすればビッグデータには最適化されない

森 英人氏
日本IBM ソフトウェア事業部 インフォメーションマネジメント事業部
ビッグデータ&データマネジメント製品営業部 統括部長 
森 英人氏

 ビッグデータに関わるあらゆるテクノロジーを持っているIBM。それぞれを、目的に応じ使い分けることが重要だと森氏は言う。

 「1つのテクノロジーで、顧客の課題すべてを解決できるわけではありません。OLTPの最適化をすれば、ビッグデータには最適化されません」(森氏)

 たとえば、検索系の処理か更新系の処理かでも解決するためのテクノロジーは異なる。さらに昨日のデータを見たいのかリアルタイムに見たいのか、あるいは1ヶ月分のデータすべて溜めてから見たいのかでも使うべき技術は当然異なる。さらに同じリアルタイムでも、後で帳尻が合う程度のデータの正確さがあればいいのか、あるいはリアルタイムでもデータの高い正確性を求められるかで求められる技術は違ってくる。

 ある銀行では、業務要件の違いからデータ処理パターンの洗い出しをした。結果的には29のパターンにまで絞り込むことができたとか。この銀行では、処理パターンごとに最適な技術を選択し組み合わせていくことになる。

 とはいえ、この銀行のようにすべての業務処理を洗い出す作業に取り組める体力があればいいが、多くの企業はそんなことを行う余裕はない。多くの場合は、深く考えずにベンダーの薦めるままにテクノロジーを選択することだろう。

 そこで顧客がなるべく間違いのないビッグデータ技術の選択ができるよう、IBMではビッグデータに関わる処理をデータベースの視点からシンプルに分類しモデル化している。扱うデータが構造化か非構造化か、さらにはその中間とも言える構造化データではあるがスキーマモデルではないものにまずは分類する。さらに処理がOLTPなのかデータウェアハウスのようなオペレーショナル・アナリティクスなのか、あるいはより高度で深い分析を行うディープ・アナリティクスなのかで分けるのが基本の形だ。

図 IBMがシンプル化したデータベースの処理モデル
IBMがシンプル化したデータベースの処理モデル

 これらの条件で分類すると、それぞれで重なる部分はあるものの図のように大きくは3つのパターンに分けられる。リレーショナルデータベースで対処すべきOLTPの領域、これはたとえば銀行のATMの処理など勘定系の処理であり、大量の同時アクセスがあってもトランザクションが滞留しないようする。「この場合はスループット重視となり、その上でデータが間違ってはいけません」と森氏。求められるのはシーケンシャル性、値の精度、そして可用性でありいわゆるミッションクリティカルな世界だ。

 この領域のビッグデータを最適に処理するには、シェアードディスク型の可用性を重視したアーキテクチャ「IBM DB2 pureScale」のテクノロジーがいい。これはメインフレームのSystem 390時代から受け継がれている技術であり、高い可用性を確保すると同時に「ほとんどリニアな拡張性を持っています」と森氏。

 このシェアードディスク型のアーキテクチャは、DB2以外にはOracle DatabaseのReal Application Clustersだけだ。

 「当時のOracleはオープンなデータベースを誰でも使えるようにしました。その中で高い可用性を実現するには、性能を犠牲にしたところがあります。これは、歴史的な宿命。リニアな拡張性はpureScaleに優位性があります」(森氏)

 pureScaleでは、ロック制御の仕組みを専用のマシンで行う。これでクラスターの処理で発生するロック情報のやり取りというボトルネックをなくしている。これがOLTP領域のビッグデータ処理におけるIBMの優位性というわけだ。

次のページ
オペレーショナル・アナリティクスにはシェアードナッシングを

この記事は参考になりましたか?

  • Facebook
  • Twitter
  • Pocket
  • note
DB Press連載記事一覧

もっと読む

この記事の著者

谷川 耕一(タニカワ コウイチ)

EnterpriseZine/DB Online チーフキュレーターかつてAI、エキスパートシステムが流行っていたころに、開発エンジニアとしてIT業界に。その後UNIXの専門雑誌の編集者を経て、外資系ソフトウェアベンダーの製品マーケティング、広告、広報などの業務を経験。現在はフリーランスのITジャーナリスト...

※プロフィールは、執筆時点、または直近の記事の寄稿時点での内容です

この記事は参考になりましたか?

この記事をシェア

EnterpriseZine(エンタープライズジン)
https://enterprisezine.jp/article/detail/6322 2014/11/11 17:03

Job Board

PR

おすすめ

アクセスランキング

アクセスランキング

イベント

EnterpriseZine(エンタープライズジン)編集部では、情報システム担当、セキュリティ担当の方々向けに、EnterpriseZine Day、Security Online Day、DataTechという、3つのイベントを開催しております。それぞれ編集部独自の切り口で、業界トレンドや最新事例を網羅。最新の動向を知ることができる場として、好評を得ています。

2023年3月14日(火)10:00~16:00

新規会員登録無料のご案内

  • ・全ての過去記事が閲覧できます
  • ・会員限定メルマガを受信できます

メールバックナンバー

アクセスランキング

アクセスランキング