SHOEISHA iD

※旧SEメンバーシップ会員の方は、同じ登録情報(メールアドレス&パスワード)でログインいただけます

EnterpriseZine(エンタープライズジン)編集部では、情報システム担当、セキュリティ担当の方々向けに、EnterpriseZine Day、Security Online Day、DataTechという、3つのイベントを開催しております。それぞれ編集部独自の切り口で、業界トレンドや最新事例を網羅。最新の動向を知ることができる場として、好評を得ています。

最新イベントはこちら!

Data Tech 2024

2024年11月21日(木)オンライン開催

EnterpriseZine(エンタープライズジン)編集部では、情報システム担当、セキュリティ担当の方々向けの講座「EnterpriseZine Academy」や、すべてのITパーソンに向けた「新エバンジェリスト養成講座」などの講座を企画しています。EnterpriseZine編集部ならではの切り口・企画・講師セレクトで、明日を担うIT人材の育成をミッションに展開しております。

お申し込み受付中!

EnterpriseZine(エンタープライズジン)

EnterpriseZine編集部が最旬ITトピックの深層に迫る。ここでしか読めない、エンタープライズITの最新トピックをお届けします。

『EnterpriseZine Press』

2024年秋号(EnterpriseZine Press 2024 Autumn)特集「生成AI時代に考える“真のDX人材育成”──『スキル策定』『実践』2つの観点で紐解く」

EnterpriseZine Press

AI開発の成否を分けるのは「データのラベリング」 米Labelbox創業者に聞く


 AI開発において重要な役割を果たすのが、AIに取り込むデータの「ラベリング」だ。アルゴリズムにデータを学習させる際に、個別のデータにタグやラベルづけを行うアノテーションというプロセスによって、AIの精度が大きく左右される。米ラベルボックス(Labelbox)はこの「ラベリング/アノテーション」にフォーカスしたAIベンチャー企業。AI開発の効率化と一元管理を推進するサービスを提供している。同社の共同創始者兼取締役のブライアン・リーガー(Brian Rieger)氏が来日し、インタビューに応じてくれた。

「ラベリング/アノテーション」のプラットフォームを提供する

Labelbox Co-Founder / President Brian Rieger氏
Labelbox Co-Founder / President Brian Rieger氏

 AIをビジネスに取り入れる動きは活発だ。自社の製品にAIを組み込み、新たなビジネスにつなげることや、AIによるデータの分析・活用によって業務の変革をめざすことまで、さまざまな取組みが行われている。

 しかし、こうしたAIのプロジェクトが必ずしもうまくいくわけではない。PoC(概念実証)の段階での終了や、導入や開発の遅延といった例も少なくない。こうした背景には、AIの開発に必要なデータの問題がある。機械学習のプロジェクトにとっては、AIモデルに学習させるデータが適切に「ラベル付け」されている必要がある。こうした「ラベリング/アノテーション作業」は、これまで経験やノウハウを持つ作業者による膨大な時間と労力が必要とされ、その精度にばらつきが出てしまうことも問題だった。

 ラベルボックス(Labelbox)は、この「ラベリング/アノテーション」のプラットフォームを提供するAIベンチャーだ。米国では、アンドリーセン・ホロウィッツ、データブリックスの投資会社のDatabricks Ventures、有名投資家キャシー・ウッドが率いるアークインベスト、ソフトバンク・ビジョン・ファンドなど錚々たるVCから資金調達をすませた急成長企業。日本では日立ソリューションズが販売代理店契約を結んでいる。ブライアン・リーガー氏は日立ソリューションズのオフィスでインタビューに応じてくれた。

航空力学からAIへ

── 起業の経緯を教えて下さい。

 フロリダにあるエンブリー・リドル航空大学で航空力学が専門でした。当時は航空・宇宙機器のハードウェアの設計の仕事をめざしていました。その後、ボーイング社に研究者として6年間務め、ボーイング787 ドリームライナーのフライトテストなどに参画していました。そこで革新的なエンジニアリングについて多くのことを学びました。ボーイング787のプロジェクトでは、日本の製造業で、新幹線などに関わったエンジニアリングチームとの共同作業もあり、刺激を受けたことを覚えています。

── 航空・宇宙からAIへ転身した理由は何でしょうか?

 大学時代は航空機の設計のため、機械学習を学び、その後ソフトウェア工学やコンピュータサイエンス、現在のAIの実践技術を学んできました。すべて独学です。10年前なので、ディープラーニングはまだ初期の段階で、応用技術はかなり原始的でした。当時はそれ以前のニューラル・ネットワーク技術が主流でした。

 航空力学は今でも私が情熱を傾けている分野です。ただ私自身は、起業したいという夢があり、ボーイングを辞めて、大学時代から一緒だったシャルマ(Manu Sharma)と起業したのです。それまでのデータサイエンスとAIを活かしたツールで、人々の社会や世界を変えていきたいと思ったからです。シャルマとはそれ以前にも、いくつか会社を作りましたが、ラベルボックスというビジネスのアイデアを持って、本格的に始めたのが2018年です。

── ラベリングやアノテーションという領域に特化した理由は?

 これまでのソフトウェアの開発は、構造化された情報を処理するためのコードを書くことでした。そのためのプログラミングツールは半世紀にわたって進化してきました。ソフトウェアの開発のプログラミングは、人がコードを書いたり編集したりすることが重要でした。AIの開発においては、ラベリングによって「データを鍛える」ことが重要となります。ラベリングとは人間がコンピュータやAIに世界を理解する方法、意思決定の方法を与えることです。ラベリングツールを作ろうと思った目的は、トレーニングデータの収集とラベル付けを容易にすることです。データサイエンティストやエンジニアのニーズを解決してくれる良いツールがなかったからです。

次のページ
日本企業の「カイゼン」に影響された品質向上プロセス

この記事は参考になりましたか?

  • Facebook
  • X
  • Pocket
  • note
EnterpriseZine Press連載記事一覧

もっと読む

この記事の著者

京部康男 (編集部)(キョウベヤスオ)

ライター兼エディター。翔泳社EnterpriseZineには業務委託として関わる。翔泳社在籍時には各種イベントの立ち上げやメディア、書籍、イベントに関わってきた。現在は、EnterpriseZineをメインにした取材編集活動、フリーランスとして企業のWeb記事作成、企業出版の支援などもおこなっている。 ...

※プロフィールは、執筆時点、または直近の記事の寄稿時点での内容です

この記事は参考になりましたか?

この記事をシェア

EnterpriseZine(エンタープライズジン)
https://enterprisezine.jp/article/detail/16570 2022/11/25 16:44

Job Board

AD

おすすめ

アクセスランキング

アクセスランキング

イベント

EnterpriseZine(エンタープライズジン)編集部では、情報システム担当、セキュリティ担当の方々向けに、EnterpriseZine Day、Security Online Day、DataTechという、3つのイベントを開催しております。それぞれ編集部独自の切り口で、業界トレンドや最新事例を網羅。最新の動向を知ることができる場として、好評を得ています。

新規会員登録無料のご案内

  • ・全ての過去記事が閲覧できます
  • ・会員限定メルマガを受信できます

メールバックナンバー

アクセスランキング

アクセスランキング