「認識・予測」のAIへの置き換えでビジネスが大きく変わる
まず「認識」の場合をみてみよう。たとえば、犬と猫を見分けて認識するのは、誰もが直感的に行なうことで、ルール化は難しく、従来のシステムでは置き換えが難しかった。また、ファッションの領域で「この服と似ているスタイル」を検索しようと思った時に、現在は形や色などのキーワードで探すのが一般的だが、優れたスタイリストならば、雰囲気が似ている服を感覚的に見つけ出す。
こうした「認識」は、まさに直感的な処理の最たるものであり、AI/機械学習によって置き換えができる可能性がある。犬と猫の見分けも、スタイリストのように雰囲気の似た服を直感的に選び出すこともできるようになる。他にも、会社の与信は大量の資料や情報から人間が行なってきたが、そうした資料の読み込みと判断も置き換えられるかもしれない。また、画像の他にも手書き文字の認識や音声・音響の認識などにおいても同様に置き換えられるものが出てくるだろう。
そして2つ目の「予測」についてはどうだろう。ビジネスの世界では常に先読みをして行動することが求められており、これまで一部の人間の予測判断に基づいて行なわれてきた。従来は、この部分の機械化は難しいとされてきたが、いまや置き換えや補完ができる可能性が高い。たとえば「異常の検知」が話題になっているが、異常を起こす前のデータを集めて関連性を見極めれば、「異常の予測」も可能になる。また、ECサイトでもデータから次に購入される予測が立てられれば、リコメンドやマーケテイングなどの行動も変わってくるだろう。
他にも人材紹介事業などでのマッチングについても、AI/機械学習による「成約や活躍の予測」がかなえば、定着などを勘案しながらより良い成果をあげられるよう対応が変わるだろう。さらに金融の領域では、倒産などのリスク予測がAIによるものとなる可能性がある。
椎橋氏は「今後、これまで人間が行なってきた部分がAI/機械学習に置き換えられれば、おそらく仕事の仕方も大きく変わってくるはず」と語る。
これまでは、リアルの世界でモノの流通や加工で産業革命が起き、ITが登場してデジタルの世界でも起きた。AIはその間をつなぐ部分を担い、リアルな世界を観てデジタルに落とす『認識・予測』から、今度は何かを生み出したり、リアルのロボットを制御するなどデジタルからリアルへの働きかけも生じていくと考えられる。つまり、AIの真価は、『一部の業務の部分的な効率化』ではなく、『コアな業務が大きく変わること』にあるのではないかと思われる。
こうした認識・予測から始まっていくAI/機械学習による第4次産業革命が、どのように自社のコアビジネスに影響するのか。それを考えるところが起点となるというわけだ。
多種多様な企業でAI/機械学習導入の取り組みが進む
続いて椎橋氏は、自社のコアビジネスにAI/機械学習を導入し、大きなビジネス価値を与えた例、構造を変えてきた例について紹介した。
1つめに紹介されたのは、あるゼネコンの施工管理業務へのAI/機械学習の導入事例だ。施工管理業務はベテランの属人的な技術に負うものであることが多い。それをすべて置き換えようというもので、長期的な取り組みになっているという。さらにゼネコンにおいては、設計業務の領域へのAI/機械学習の導入事例も進んでおり、それによって最適化・省力化・短縮化を図ろうとしているという。
2つめは、介護サービス企業でのケアプランの作成における導入事例。慢性的に人手不足という状況下で、プランニングの質が悪いとオペレーションも悪く現場が疲弊してしまう。そこで被介護者に対してヒアリングとアセスメントを行ない、既存の優れたケアプランをモデルとしつつ自然言語の認識技術を用いて自動的にプランを作成している。
さらに大手メディアの非財務情報(文書情報)に基づく企業評価の自動化システム、大手人材紹介/人材派遣に対する、成約確率の予測に基づく求職者と求人案件のマッチングシステムなども紹介された。
また大手製薬で、レセプトデータを自然言語処理技術を活用して自動処理することによる医療管理改革や、機器メーカーにおいて映像によるユーザー状態認識機能を持つ次世代型キオスク端末の開発に携わるなど、多くの事例が紹介された。
椎橋氏は「いずれもそれぞれのコアプロセスに直結した部分であり、従来は熟練者の担っていた部分をAI/機械学習で補完し、一部を置き換えることを意図している。そして中長期的なプロジェクトビジョンを持って取り組むことで、未来における大きなビジネス価値を創出することができる」と語った。