EnterpriseZine(エンタープライズジン)

EnterpriseZine(エンタープライズジン)

テーマ別に探す

コロナ禍でも精度の高い需要予測を実現したカルフール SASが描くサプライチェーン全体の最適化

edited by DB Online   2021/01/13 10:00

需要予測の精度を高め人材育成も併せてサポート

 SASではサプライチェーンの最適化を実現する際に「需要予測が改めて重要な要素だと考えています」と井上氏は言う。需要予測の精度を向上するためには、新商品への対応、売価/値引きの影響、カニバリの影響、季節/天候の影響、周辺イベントの影響、欠品の影響という6つの要素すべてを考える必要がある。

 これらすべてを取り込んで予測するノウハウが、SASにはあると井上氏は自信を見せる。これらの要素を取り込めないと、今回の新型コロナウイルスのような経験のない環境変化を踏まえ、需要予測することは難しい。「裏を返せばこれら6つの影響をしっかりと捉えて分析できれば、コロナ禍においても精度の高い需要予測につながります」と言う。

クリックすると拡大
クリックすると拡大

 高い精度で需要予測を行うには、1つのモデルを作って終わりではない。複数のモデルを作り、モデルを試しながら精度を上げていく。これはまさにAnalyticsOpsを実践することであり、アナリティクスのライフサイクルをスムースかつ素早く回せなければならない。

 そのために必要な機能をSASはすべて揃えており、その上でデータサイエンティストなどが使い慣れたツールや技術があれば、それらをAPIで連携してライフサイクルに取り込めるのがSASのプラットフォームの特長でもある。

 需要予測の精度を高め、予測を企業内で活用してDXにつなげる人材育成まで含めてサポートできる。これら両軸のアプローチで、サプライチェーン全体の最適化をSASではサポートしているのだ。



著者プロフィール

  • 谷川 耕一(タニカワ コウイチ)

    EnterpriseZine/DB Online チーフキュレーター かつてAI、エキスパートシステムが流行っていたころに、開発エンジニアとしてIT業界に。その後UNIXの専門雑誌の編集者を経て、外資系ソフトウェアベンダーの製品マーケティング、広告、広報などの業務を経験。現在はフリーランスのITジャーナリストとして、クラウド、データベース、ビッグデータ活用などをキーワードに、エンタープライズIT関連の取材、執筆を行っている。

バックナンバー

連載:EZ Press

もっと読む

All contents copyright © 2007-2021 Shoeisha Co., Ltd. All rights reserved. ver.1.5