前回の記事では、分析を開始する前には、仮説をチェックし分析で達成したい目標(ゴール)に関するあいまいさを排除すべきこと、および、データ分析においても「80対20の法則」は有効で、やみくもにデータを集めるのではなく必要不可欠なデータを十分に見極めた上でデータを収集すべきことについて、ご説明しました。今回は、「データの分析」と「統計的な解釈」について、ご説明いたします。今までの連載はこちら。
この記事は参考になりましたか?
- 多忙なミドルのためのデータサイエンス入門 連載記事一覧
-
- 意外と知られていない分析結果の正しい伝え方 - 「可視化」に含まれる二つの意味
- 意思決定の質を向上させる統計的検定のすすめ 「“カイ”より始めよ」
- データ分析にも有効な「80対20の法則」
- この記事の著者
-
神子島 隆仁(カゴシマ タカヒト)
ITエンジニアを経て、分析コンサルタントとして、社内外クライアントの経営及びマーケティングに関する意思決定を支援。データサイエンスが、ビジネスだけではなく、よりよい社会の実現に役立つことを夢見て、活動中。
※プロフィールは、執筆時点、または直近の記事の寄稿時点での内容です
-
白石 嘉伸(シライシ ヨシノブ)
マーケティング・コミュニケーションの可能性に興味を持ち、デジタルマーケティング(調査分析、行動データからのインサイト発掘、マーケティングの自動化など)のプランニングや支援を行う傍ら、その具体的な表現となるデザイン、設計にも興味を持ちインフォメーションアーキテクト、人間中心設計専門家としても活動。
※プロフィールは、執筆時点、または直近の記事の寄稿時点での内容です
-
黒沢 健二(クロサワ ケンジ)
1982年生まれ。リサーチャー/アナリストとして、大手IT企業での調査・分析や、大手不動産メディアでのビックデータ分析設計をはじめ、仮説構築から施策立案、検証まで様々なプロジェクトに携わる。学生時代にイタリアでデザイン設計を学んでいたこともあり、デジタル技術の進歩を見据えた人の創造性のあり方が興味関...
※プロフィールは、執筆時点、または直近の記事の寄稿時点での内容です
この記事は参考になりましたか?
この記事をシェア