ハイパフォーマンスでインメモリカラムナのDb2をクラウドで「IBM Db2 Warehouse on Cloud」
データに関する課題はまだある。単にデータといっても構造化や非構造化、テキスト以外の音声や画像など、データには多種多様な形式がある。また格納されている場所もオンプレミスからクラウドまで幅広い。データストアがどれだけ柔軟かつ幅広く対応できるかも重要だ。四元氏はIBMが提供するデータストア(下図)を挙げ、その幅広さを示した。
続けて四元氏が「実はこんなものもあります」と話すのがSQL QueryとIBM Analytics Engine。前者はクラウドのオブジェクトストレージにSQLを投げてデータ分析するサービスだ。大ざっぱに言えばAmazon Web ServicesのAthenaをイメージすればいい。実はIBMのクラウドにも同等の機能がある。後者はHadoopとSparkをSaaSで利用するサービス。「ハードウェア管理などをすることなく、使うことだけに専念できます」と四元氏は言う。
なかでも四元氏イチオシなのが「IBM Db2 Warehouse on Cloud」。ハイパフォーマンスなインメモリカラムナのDWHがクラウドサービスで利用できる。元データが大きくても必要なデータだけメモリ上で圧縮したまま処理ができるため、高いパフォーマンスを実現できている。
運用面から見ると、クラウドサービスなので管理者があれこれ運用管理やチューニングする必要がないところがメリットだ。運用はIBMに任せておけばいい。ダウンタイムなしにリソースの拡大や縮小ができるのもクラウドならではだ。「今年、他社が似たようなサービスをリリースしましたが、IBMは15年前から運用自動化に投資しており、IBMはすでに2~3年前からお客様にクラウドサービスとしても提供している実績があるのです」(四元氏)
四元氏はAWS Redshiftとの比較も示した。AWSのサイトで示された作業項目と比べると、IBM Db2 Warehouse on Cloudでは多くの保守作業が不要となる。「AWS Redshiftでは最低でも1人の運用担当者(DBA)が必要ですが、IBM Db2 Warehouse on CloudではDBAの負担が軽減され運用コストが削減できます」と話す。またデータ分析を始めるまでのステップ数で比較すると、IBM Db2 Warehouse on Cloudでは4ステップですむため「3倍簡単で迅速」だと四元氏はデモを交えて主張した。
統計処理や機械学習をする上でのメリットもある。一般的に統計処理や機械学習をするには、データストアからデータベースサーバーの間で大量のデータ移動を行う必要があり、そこに多くの時間を必要とされてきた。一方、Db2ではSQLやライブラリをデータベース内に組み込んでいるデータベースエンジンでもあるため、データ移動にかかる時間を排除できる。