SHOEISHA iD

※旧SEメンバーシップ会員の方は、同じ登録情報(メールアドレス&パスワード)でログインいただけます

EnterpriseZine(エンタープライズジン)編集部では、情報システム担当、セキュリティ担当の方々向けに、EnterpriseZine Day、Security Online Day、DataTechという、3つのイベントを開催しております。それぞれ編集部独自の切り口で、業界トレンドや最新事例を網羅。最新の動向を知ることができる場として、好評を得ています。

最新イベントはこちら!

Data Tech 2024

2024年11月21日(木)オンライン開催

EnterpriseZine(エンタープライズジン)編集部では、情報システム担当、セキュリティ担当の方々向けの講座「EnterpriseZine Academy」や、すべてのITパーソンに向けた「新エバンジェリスト養成講座」などの講座を企画しています。EnterpriseZine編集部ならではの切り口・企画・講師セレクトで、明日を担うIT人材の育成をミッションに展開しております。

お申し込み受付中!

EnterpriseZine(エンタープライズジン)

EnterpriseZine編集部が最旬ITトピックの深層に迫る。ここでしか読めない、エンタープライズITの最新トピックをお届けします。

『EnterpriseZine Press』

2024年秋号(EnterpriseZine Press 2024 Autumn)特集「生成AI時代に考える“真のDX人材育成”──『スキル策定』『実践』2つの観点で紐解く」

DB Online Day 2018 Powered by IBM(AD)

「AI活用の壁」をどう乗り越えるか?――成功から失敗までを知りつくす3人が語る!

「AIで使える」にはデータレイクがあればいい?

谷川:本当に「AIで使える=AIレディ」にするにはどうするかに話を移していきます。企業のデータをAIレディにするには、改めてデータウェアハウスを整備した方がいいんじゃないかと思うんですが。

平井:データウエアハウスでは分析モデルが先に決まります。データの前処理まではデータウェアハウスもAIもほぼ一緒です。しかしインプリするタイミングが違います。AIだとデータサイエンティストやそれに近い人が試行錯誤しながらデータを作ります。この違いは大きく、データウェアハウスではないです。使えるデータがあっても、それだけではAIレディには十分ではないです。

谷川:ビジネス指標に対して何らかのAIを使うなら?

平井:経営的、経営判断的なものになれば、そうですね。

谷川:データレイクと呼ばれていたものがAIや機械学習のデータのソースになるでしょうか?

平井:私の印象だとデータレイクとは、もともとデータウェアハウスとの対比で出てきたものです。「データは倉庫よりも、湖に貯めておけ」と。とりあえず貯めておく貯水池です。またデータレイクは当初NoSQLのキーバリュー型データをためるものでしたが、最近ではファイルシステムのようにとらえられてきているという気がします。

谷川:データレイクを作っていてもAIレディにはならない?

平井:たぶん。今のデータレイクだと何の前処理もしていません。貯めてるだけです。

谷川:IBMの主張だとデータレイクはどうですか?

野間:一般的なデータレイクは「いろんな本を何でも置いておけるような大きな倉庫、レスポンスの良い倉庫を用意しました」で止まっています。IBMの考えは「自分に必要なデータをすぐに使えるように、図書館みたいに整理整頓されたものを作っていきましょう」です。これがIBMが考えるデータレイクのあるべき姿です。

谷川:それがエンタープライズデータカタログとなりますか?

野間:はい、そうなります。

谷川:具体的には何をするものでしょうか。

野間:例えば複数のデータソースがあったとして、元のソースは何か把握できるようにします。リレーショナルデータベースなのか、その表はどのような定義なのか、物理的な部分をカタログ化していくことができます。加えて、データを社内の業務で使う共通言語で紐付けすることができます。例えば工場Aで使う「プロダクトID」と、工場Bで使う「プロダクトID」は同じ用語でも意味合いが違うことがあります。そうした用語の定義や紐付けを行います。もう1つ、データの来歴管理もできます。例えば「この分析に使っているデータはどのデータソースから来て、このようなバッチ集計を経ていた」といった履歴が分かります。こうしてデータを利用するユーザーにわかりやすいデータリソースとして定義します。

谷川:先ほどの三澤さんの講演では自動的にメタタグをつけるとかおっしゃっていたような。手でやるならすごい手間だけど、楽になるのでしょうか。

野間:データを検索していく部分では自動化できます。しかし企業内の用語統一となると、そこは人が頑張らないといけません。ただし一度カタログを作っておけば、次に他の部門とコラボレーションする時に共通言語で進められるので、いろんな人が同じデータを参照して分析できるようになります。

次のページ
AIを始めるなら、具体的には何から始めたらいい?

この記事は参考になりましたか?

  • Facebook
  • X
  • Pocket
  • note
DB Online Day 2018 Powered by IBM連載記事一覧

もっと読む

この記事の著者

加山 恵美(カヤマ エミ)

EnterpriseZine/Security Online キュレーターフリーランスライター。茨城大学理学部卒。金融機関のシステム子会社でシステムエンジニアを経験した後にIT系のライターとして独立。エンジニア視点で記事を提供していきたい。EnterpriseZine/DB Online の取材・記事も担当しています。Webサイト:https://emiekayama.net

※プロフィールは、執筆時点、または直近の記事の寄稿時点での内容です

【AD】本記事の内容は記事掲載開始時点のものです 企画・制作 株式会社翔泳社

この記事は参考になりましたか?

この記事をシェア

EnterpriseZine(エンタープライズジン)
https://enterprisezine.jp/article/detail/11523 2018/12/26 06:00

Job Board

AD

おすすめ

アクセスランキング

アクセスランキング

イベント

EnterpriseZine(エンタープライズジン)編集部では、情報システム担当、セキュリティ担当の方々向けに、EnterpriseZine Day、Security Online Day、DataTechという、3つのイベントを開催しております。それぞれ編集部独自の切り口で、業界トレンドや最新事例を網羅。最新の動向を知ることができる場として、好評を得ています。

新規会員登録無料のご案内

  • ・全ての過去記事が閲覧できます
  • ・会員限定メルマガを受信できます

メールバックナンバー

アクセスランキング

アクセスランキング