SHOEISHA iD

※旧SEメンバーシップ会員の方は、同じ登録情報(メールアドレス&パスワード)でログインいただけます

EnterpriseZine(エンタープライズジン)編集部では、情報システム担当、セキュリティ担当の方々向けに、EnterpriseZine Day、Security Online Day、DataTechという、3つのイベントを開催しております。それぞれ編集部独自の切り口で、業界トレンドや最新事例を網羅。最新の動向を知ることができる場として、好評を得ています。

最新イベントはこちら!

Data Tech 2024

2024年11月21日(木)オンライン開催

EnterpriseZine(エンタープライズジン)編集部では、情報システム担当、セキュリティ担当の方々向けの講座「EnterpriseZine Academy」や、すべてのITパーソンに向けた「新エバンジェリスト養成講座」などの講座を企画しています。EnterpriseZine編集部ならではの切り口・企画・講師セレクトで、明日を担うIT人材の育成をミッションに展開しております。

お申し込み受付中!

EnterpriseZine(エンタープライズジン)

EnterpriseZine編集部が最旬ITトピックの深層に迫る。ここでしか読めない、エンタープライズITの最新トピックをお届けします。

『EnterpriseZine Press』

2024年秋号(EnterpriseZine Press 2024 Autumn)特集「生成AI時代に考える“真のDX人材育成”──『スキル策定』『実践』2つの観点で紐解く」

IT Initiative Day(AD)

"ビッグデータ"をバズワードで終わらせないために - 日立製作所・山口氏×野村総合研究所・鈴木氏

IT Initiative Day/ビッグデータ時代のビジネス戦略 (2012.1.23) 日立製作所 セミナーレポート

いまやIT業界でもっとも耳にするバズワードとなった"ビッグデータ"だが、実はブームと呼ばれるようになってからかなり時間が経つにもかかわらず、未だに定義がはっきりしない曖昧模糊としたままの単語でもある。データを活用するというビジネスマインドがようやく国内企業にも少しずつつ浸透しようとしている中にあって、ビッグデータを単なる流行語で終わらせないためにはどんな取り組みが必要とされているのか。本稿では1月23日、東京・ベルサール九段で開催された「IT Initiative Day 2012 ビッグデータ時代のビジネス戦略」において、日立製作所 情報・通信システム社 ソフトウェア事業部 大量データ処理ビジネス推進室 担当部長 山口俊朗氏に、『ビッグデータビジネス』の著者である野村総合研究所 ICT・メディア産業コンサルティング部主任コンサルタント 鈴木良介氏が"ビッグデータ時代のビジネス戦略"について迫った対談の内容をお伝えしたい。

10年前のユビキタスと何がちがうのか

ビッグデータとは何か
事業に役立つ知見を導出するための、「高解像」「高頻度生成」「多様・非構造」なデータ」
野村総合研究所 ICT・メディア産業コンサルティング部主任コンサルタント 鈴木良介氏

 鈴木: ビッグデータという言葉は現在のところ、はっきりとした定義は固まっていません。ですが私個人の意見としては、

 ・高解像度

 ・高頻度生成(リアルタイム)

 ・多様(非構造を含む)

 であるデータを"ビッグデータ"と呼んでよいのでは、と思っています。データが高解像度化するということは、同じ現象をより細かく表現できるということですから、当然、データ量が増えます。そういったデータは種類も多様で、また頻繁に生成されれば、結果としてデータはビッグになる - これがビッグデータの現状ではないでしょうか。

 10年前、ユビキタスという考え方に注目が集まりました。考え方としては正しかったと思いますが、そのコンセプトを実現するほどには情報通信技術の活用が成熟していなかったのではないでしょうか?その理由はなぜか。10年前の段階ではまだデータ量も十分でなければ、データを分析し活用するという社会基盤もありませんでした。しかし一方で、10年前の2001年という年はデータをめぐる非常にシンボリックな動きが数多く見られました。JRからSuicaが登場し、FOMAサービスが開始したのも2001年です。その後、ネットワークは帯域がどんどん太くなり、さらにGPSが携帯電話に標準搭載されるようになり、データを取り巻く環境は10年で様変わりしたといえます。現在は、地道ながらも自ずとデータが蓄積される基盤が出来上がりつつあると感じます。

 現在はこの溜まってきたビッグデータを活用する段階に入ってきているのではないでしょうか。事業所内に溜まっている、ストレージのお荷物と呼ばれがちな"死蔵データ"をすこしずつ紐解いてみることで、だんだんと分析が進んでいくのでは…と期待しています。日立ではビッグデータの全体像をどのように捉え、データ分析から知見を得るにはどのような方法が有効だと定義しているのでしょうか。

人とモノが発信する社会にはデータのライフサイクルが必要

情報爆発時代のBig Data活用
情報爆発時代のBig Data活用

 山口: 人が発信する情報に加えて、モノが発信する情報が社会にあふれるようになったということが、現在のビッグデータブームを語る上で非常に重要なキーとなります。先ほど言われたようなICカードやGPSのほか、物流システムや電力メーターで使われているセンサーが、どんどんしゃべりだす時代になったのです。人が発信する情報とモノが発信する情報がこのまま増え続ければ、2015年には法人向け国内ディスクストレージシステムの容量は5,000ペタバイトに跳ね上がると予想されています。これは2011年の5倍に相当する数字です。

 このように、これまで誰も経験したことがない爆発的な量の"ビッグデータ"を活用するには、データのライフサイクルに応じた処理が必要だと日立は考えています。

 データのライフサイクルのフェーズは

 ・リアルタイム監視

 ・蓄積/検索

 ・集計/分析

 の3つに大きく分けられます。

 大量のデータを瞬時に分析するリアルタイム監視はストリームデータ処理やインメモリによるデータ処理などで実現できますが、日立はこの分野のミドルウェア製品として「uCosminexus Stream Data Platform」を提供しています。

ビッグデータの高速処理技術

 山口: データの高速検索や効率的な補完を可能にする蓄積/検索の技術としては、東京大学と共同で 超高速データベースエンジンの研究開発を行っており、従来型のデータベースエンジン比で約800倍の処理性能をめざすニュースリリースを2011年の6月に配信しました。今後、実証実験を経て、研究開発成果を反映した新しいデータベースソフトウェアの開発をすすめ、2012年度には事業化することを目指しています。

 そして大量の情報を対象とした集計/分析では、バッチ処理を複数サーバで分散実行する処理基盤、さらには既存のCOBOLのバッチでも活用できるようなミッションクリティカルな基盤が求められます。リアルタイム監視と同様に、日立はここでもミドルウェア製品「uCosminexus Grid Processing Server」を提供しています。

 鈴木: そうしたソリューションの活用も含め、日立が展開してきたビッグデータビジネスの具体的な事例にはどんなものがあるでしょうか。

ガスタービン保全、交通状況モニタリングなどのリアルタイム処理技術

 山口: 2つほどご紹介しましょう。

 ひとつは「ガスタービン保全システム」です。日立は世界中にガスタービンを納入していますが、これらのタービンが発信する情報を衛星通信を使って毎日収集しており、その量は1日あたり20GBになります。取得するデータの種類は圧力、回転数、温度などさまざまですが、これをインメモリでストリーム処理しています。もし異常な挙動を検出した場合は、直近データの変動パターンと比較し、「まだ大丈夫」「そろそろ部品を交換したほうがいい」などの分析をリアルタイムで行っています。世界中のガスタービンの保守をこのようにデータ分析しながら行っているわけです。

 もうひとつは「交通状況モニタリング」です。これは自動車の車両位置情報を分析して速度や走行方向を算出し、これらのデータをストリーム処理(約2,000件/秒)して渋滞を検出します。GPSデータと連携することで、リアルタイムで渋滞や事故などの状況を可視化して把握することが可能になります。

 鈴木: そういった事例で培ってきたデータ活用技術を一般企業に適用するとしたら、どんな例が考えられるでしょうか。

 山口: 日立のリアルタイム処理技術は、証券アルゴリズム取引に向けた技術として進展してきたので、監視系業務などには広く応用できると思います。たとえばITシステムの運用監視などに向いているのではないでしょうか。マシンルームの温度や稼働状況をリアルタイムに可視化するなどに力を発揮できます。そのほか、小売業などではPOSデータを売上の集計に使っているところは多いですが、これを在庫管理システムにも応用するなど、さまざまな使い方が考えられます。

経営層がビッグデータに関心を持てば情シスのチャンス

 鈴木: ビッグデータ活用においては、集積したデータから知見を得る、ということが非常に重要なポイントになります。しかし一方で、いくらデータを集めても「ゴミデータはしょせんゴミでしかない」という意見もあります。一般企業がデータ活用に踏み出そうとしたとき、まずはどのあたりから手をつければよいのでしょうか。

 山口: ビッグデータは何が重要なのか、それはいかに分析するかよりも、おっしゃるように集積したデータからいかに知見を導き出すか、です。そのためには大量のゴミの山から宝を見つけ出すような作業を要します。冒頭でも申し上げましたが、ビッグデータはこれまでのITの常識では通用しないことが多く、お客様だけでなく我々ベンダにとっても未知数の分野です。ビッグデータをどう活用していくのか、我々もお客様とともに考えていかなくてはならない。そのための足がかりとして、データを捨てずにまずは溜めておくことから始めていただければと思います。

 鈴木: では、ビッグデータ活用における最大の障壁としてはどういった課題が挙げられるでしょうか。

 山口: ビッグデータを活用してやりたいことは漠然としていても、それを数学的分析の理論に当てはめるのが非常に難しいことですね。どんなアルゴリズムを使えば効率的に分析できるのか、そういったモデルの確立が厄介なことが最大のネックです。いまなら数理統計学とプログラミングができる技術者なら、高待遇で迎えられるのではないでしょうか。

 もうひとつ、今後も課題として残るのがプライバシーの問題です。ビッグデータ分析はともすると消費者をより深く知る行為と直結します。個人情報の特定が可能なほどに消費者の顔が見える化されるわけです。これは一歩間違えると重大なプライバシー違反につながりかねません。こういった問題を避けるため、情報提供側は消費者から気持ち悪がられないようにデータを取得することを意識する必要があります。たとえば、加工する前にデータをマスキングして必要以上の個人情報を取れないようにする、個人情報そのものを暗号化する、などの方策が考えられるでしょう。

 鈴木: お話を伺っていて、確実にビッグデータは活用の時代に入ったと実感します。だからこそ、個人的にはこのままビッグデータがバズワードとして扱われるのは不本意に感じる部分もあります。しかしこのブームが続けば、逆に経営層がビッグデータに興味を示す可能性も高くなるような気もします。もしそうなったとき、情シス部門でも業務部門でも、以前からやりたいと思っていたデータ活用ビジネスがあれば、その機会に話を持ち出すチャンスかもしれません。

 山口: 国内企業でもCIOレベルであれば、ビッグデータというトレンドはかなり浸透してきたと思います。繰り返しになりますが、まずは、いままでは捨てていたようなデータや、TwitterやFacebookなど外に落ちているデータを拾うことから始めてほしいですね。このデータを蓄積するというところですでに挫折している例が多いようなので、残念に思います。日立だけでなく、ベンダはビッグデータビジネスに関するさまざまな知見をもっているので、ぜひとも気軽に相談してください。

この記事は参考になりましたか?

  • Facebook
  • X
  • Pocket
  • note

【AD】本記事の内容は記事掲載開始時点のものです 企画・制作 株式会社翔泳社

この記事は参考になりましたか?

この記事をシェア

EnterpriseZine(エンタープライズジン)
https://enterprisezine.jp/article/detail/3773 2012/03/05 13:06

イベント

EnterpriseZine(エンタープライズジン)編集部では、情報システム担当、セキュリティ担当の方々向けに、EnterpriseZine Day、Security Online Day、DataTechという、3つのイベントを開催しております。それぞれ編集部独自の切り口で、業界トレンドや最新事例を網羅。最新の動向を知ることができる場として、好評を得ています。

新規会員登録無料のご案内

  • ・全ての過去記事が閲覧できます
  • ・会員限定メルマガを受信できます

メールバックナンバー

アクセスランキング

アクセスランキング